

CCU AND CCS PERSPECTIVES FOR AUSTRIA

HANS BÖHM, VALERIE RODIN / ENERGIEINSTITUT AN DER JKU LINZ

ISEC 2024 / 10.04.2024

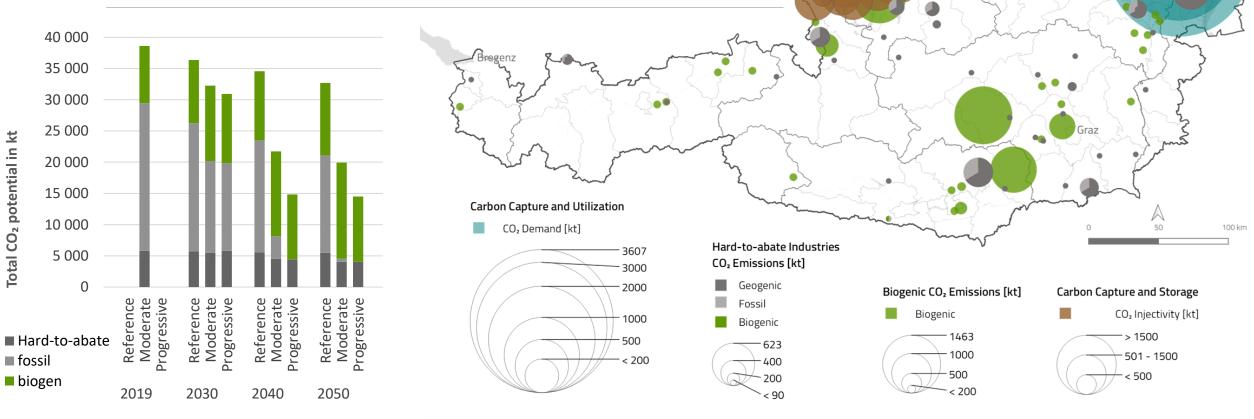
SESSION "POLICIES FOR PHASE-OUT FOSSIL FUELS AND CARBON MANAGEMENT"

Project Key Facts

An in-depth evaluation of the potential contribution of CCU and CCS for the Austrian long-term climate goals

- Lead: Energieinstitut an der JKU Linz (EI-JKU)
- Consortium: Montanuniversität Leoben (MUL) (Energy Network Technology / Process Technology and Environmental Protection / Reservoir Engineering / Petroleum Geology), denkstatt, CCCA (subcontract)
- Funding scheme: 14th Austrian Climate Research Programme (ACRP)
- **Duration:** August 2022 January 2025 (30 Months)

"In the scenarios for meeting the 1.5°C target, Carbon Capture and Storage (CCS) or Carbon Capture and Utilization (CCU) is de facto unavoidable" (see IPCC Special Report on 1.5°C).


→ CaCTUS addresses the lack of reliable data and information on the potential of these technologies in Austria

Objectives

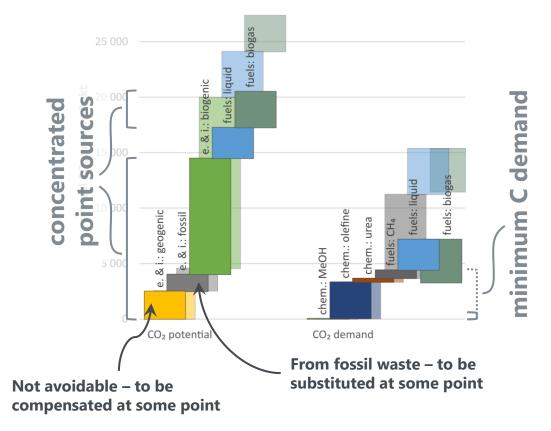
- Identification and quantification of technical potentials for CCU/CCS in Austria
- Identification of source-specific climate impacts and sinkrelated net mitigation potentials of CCU/CCS
- Techno-economic assessment of the identified carbon pathways and their contribution to climate neutrality
- Assessment of **current barriers and regulatory shortcomings** that hinder early implementation and maximize impact

3 decarbonization pathways based on NEFI and UBA scenarios

Hochmeister et al. (2024)

powered by

10.04.2024


Quantification of resource and demand potentials for CCUS

Identification of relevant products and demands – carbon balance

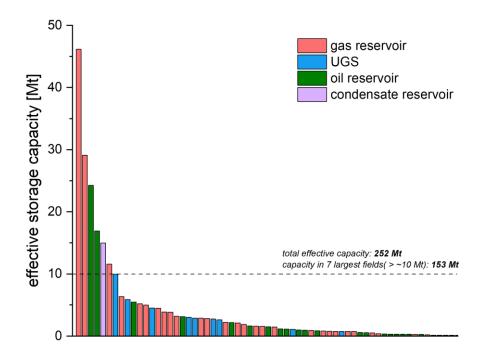
- total "emissions": 17
 capturable: 14.
 - o fossil/geogenic:
- **17.3 27.3** Mt/yr **14.5 – 23.2** Mt/yr **4.0 – 4.6** Mt/yr

- utilizable CO₂*:
 circular:
- **3.3 15.4** Mt/yr **0.5 – 11.2** Mt/yr

* if all e-fuels produced in AT; upper bounds without exploiting biogas potentials

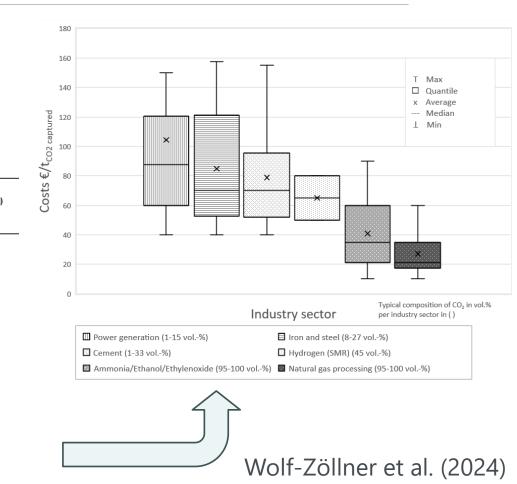
CO₂ storage potentials in Austria

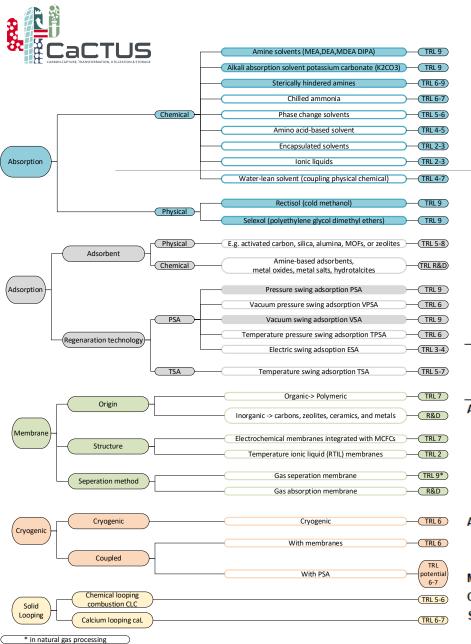
Classification by ...


... state of the fluid

- supercritical
- adsorbed (on coal)
- gas phase
- carbonated water

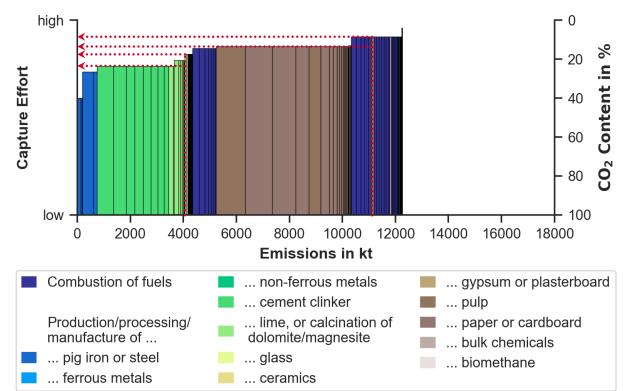
... storage medium


- saline aquifers (TRL 9)
- oil & gas fields (TRL 9)
- mafic/ultramafic rocks (TRL 2-6)
- coal seams (TRL 2-3)


Potentials in depleted hydro-carbon reservoirs

Carbon Capture -Classification & Properties

Energy demand (th) Technology GJ/t_{co2} 2,0 - 9,2 Absorption MEA, DEA, MDEA, etc. 3.0 - 4.5 E New/optimised so Potassium carbor Chilled ammonia New/optimised solvents 2.1 - 2.9 Potassium carbonate 2.0 - 2.62.0 - 2.9 2.4 - 3.4 Amino acid-based solvent Adsorption 2.4 - 9.0 Amine-based adsorbents 1.3 - 2.0 Metal-organic frameworks 0.4 - 0.8 Membrane 0.5 - 6.0 Cryogenic 2.4 - 5.2 Solid Looping 2.0 - 10.0


Assessment of CO₂ avoidance costs for identified CCUS paths

Determination of capture effort and merit of sources

- high-purity CO₂ streams will not suffice to compensate long-term fossil/geogenic emissions
- depending on exploited CCU potentials, the use of highly diluted sources will become necessary

to be considered:

- omitting potentials from biogas production shifts the curve towards higher efforts
- with higher carbon demands, decentralization of sources increases
- additional efforts for transport, purification, etc. yet to be included

Capturable carbon

Current legal and regulatory framework on CCUS

•Legal situation regarding CCU and CCS strongly influenced by **EU law**

- Main legal basis at European level regarding CCS: Directive 2009/31/EG on the geological storage of carbon dioxide (CCS-Directive)
 - Outline and analysis of the provisions of the CCS-Directive
 - Right not to allow any storage in the Member State → Austria has made use of this: Federal Act on the Prohibition of Geological Storage of Carbon Dioxide
 - Evaluation of the ban at regular intervals; next evaluation upcoming: presentation to the Council of Ministers (AT, Ministerrat) that it will probably be recommended that geological storage of CO₂ be permitted exclusively for residual emissions in "hard-to-abate" sectors
 - Analysis of the conditions for an exemption from the obligation to surrender allowances in the EU ETS in connection with CCU and CCS
 - Exemption for CCS as defined by the CCS Directive
 - Exception regarding CCU only if CO₂ is permanently chemically bound in products

Stakeholder involvement

- Stakeholder WS in Q2/23
- Survey on CC / CCU / CCS
 - \circ General information
 - \circ CCUS Potentials
 - \circ CCUS Barriers and Opportunities
 - \circ Activities in the area of carbon capture
 - \circ Activities in the area of carbon storage
 - $_{\odot}$ Activities in the area of carbon utilisation
- Interviews in Q4/23 + Q1/24
 - o Necessary advancements in the company
 - \circ Regulations
 - $\circ \text{ Subsidies}$
 - o Technical criteria
- Stakeholder WS in Q3/24

Barriers

CCU: Financial burden and lack of enabling instruments

CCS: Legislative restrictions, lack of political will and negative public perception

Drivers

CCU: **Updated ETS regulation** and improved profitability

CCS: **impact towards climate targets**, reduced costs and updated ETS regulation

Conclusions

- Even with progressive defossilization there will be remaining fossil/geogenic emissions from industry and energy sectors
 - \rightarrow These have to be compensated via storage or long-term fixation
 - \rightarrow Storage potentials in Austria are limited and may compete with energy storage
- There is a significant potential for CCU from today's products and emerging renewable fuel demands
 - \rightarrow Efforts for utilization increase with degree of exploitation of these potentials
 - \rightarrow Mechanisms to compensate costs of utilization over storage may be needed
- Under current legislation ...
 - ... CCS is not allowed in Austria → unblocking for "hard-to-abate" emissions is expected
 - ... CCU is not creditable against ETS certificates \rightarrow incentive effects for carbon cycling are missing
- CCU and CCS will be required for carbon neutrality in Austria, but are dependent on regulatory adaptations and appropriate infrastructure (domestic and beyond)!

Contact

Consortium Lead

Energieinstitut an der JKU Linz

www.energieinstitut-linz.at

Homepage

https://project-cactus.at/

Hans Böhm

<u>boehm@energieinstitut-linz.at</u> +43 (0) 732 / 2468-5665

Valerie Rodin (project leader)

rodin@energieinstitut-linz.at +43 (0) 732 / 2468-5671

https://denkstatt.eu

https://ccca.ac.at