

Chair of Reservoir Engineering

CO₂ Storage in Deep Geological Formations – Options from the Austrian Perspective

Central European Biomass Conference Graz, Austria, 19.01.2023 Holger Ott, Jakob Kulich 19.01.2023

Abstract

CO₂ Storage in deep geological formations – options from the Austrian perspective

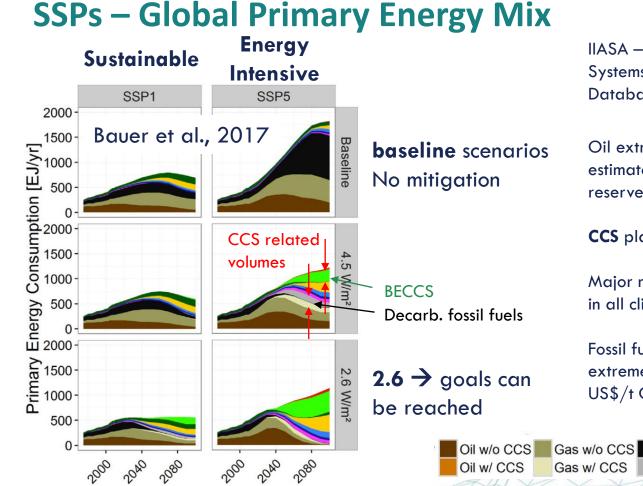
Holger Ott

Montanuniversität Leoben, Department Petroleum Engineering

Parkstraße 27, A-8700 Leoben, Austria, holger.ott@unileoben.ac.at

Co-author: Jakob Kulich, Montanuniversität Leoben

Geological CO_2 storage is a part of the Carbon Capture and Storage (CCS) technology chain. CCS allows for (a) the capture and long-term storage of CO_2 from industrial sources, thus preventing its release into the atmosphere, and (b) the direct capture from the air (from biomass or direct air capture) to achieve negative emissions. CCS is therefore considered a key enabler for decarbonizing CO_2 -intensive industries and particularly for hard-to-abate emissions. The presentation gives a brief overview of the geological storage options and the underlying storage mechanisms. The resulting storage capacity and what makes us sure that geological CO_2 storage is safe are addressed in the presentation.


In Austria, there are several potential types of geological targets, including depleted oil and gas fields and deep saline aquifers. Furthermore, Austria has several large industrial CO_2 emitters located in close proximity to potential storage sites, making CCS a potentially viable option in the country. Although, CCS has worldwide been deployed on various scales, however, not to the required extent, in Austria a federal law prohibits the geological storage of CO_2 due to concerns on the grounds that technical and safety issues still had to be clarified and concerns regarding the environmental impacts and risks. The underlying evaluation report stated that further research is needed for permanent geological storage of CO_2 , with a particular focus on national geological conditions and environmental impacts. Based on that the newly granted CaCTUS project will re-evaluate the potential for CCS in Austria according to state-of-the-art knowledge and methods in terms of storage mechanisms and safety as well as suitable geological conditions. Furthermore, potential capacities for CCS in Austria are gathered based on data material from Austrian rock formations and evaluated in a harmonized evaluation scheme.

Why CCS? The Business Case

IIASA – International Institute for Applied Systems Analysis Database: <u>https://tntcat.iiasa.ac.at/SspDb/</u>

Oil extraction in **baselines** exceeds current estimates of conventional and unconventional reserves!

CCS plays a role in all mitigation scenarios

Major role if **BECCS** in all climate friendly and **2.6 scenarios**

Fossil fuels reduced to ~ 0 in **SSP5/2.6** – extremely high carbon price exceeding 300 US\$/t CO₂

Nuclear

Hydro

Wind

Solar

Biomass

BECCS

Coal w/o CCS

Coal w/ CCS

Business Cases: Sequestering Emissions from:

Coal/HC combustion

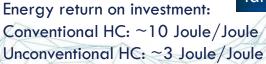
Coal/HC supply (~20-30% HC related emissions)
Sour gas developments (CO₂ containing gases)
Heavy oil upgrading – steam reforming etc.
Refining ...

Other CO_2 intensive industries like cement- and steel industry etc.

CO₂ removal form the atmosphere
BECCS – Bioenergy + CCS
Direct air capture + CCS

19.01.2023 • Page 5

License to operate for O&G operations → main reason so far for CCS technology development in the industry/academia

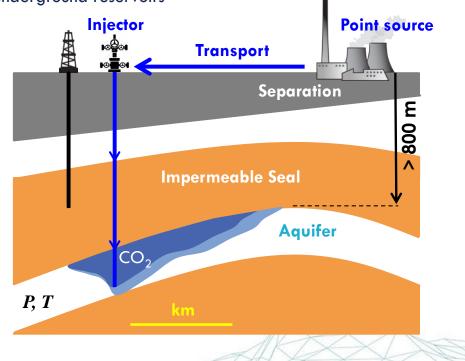


Heavy oils

Light oils

What is CCS?

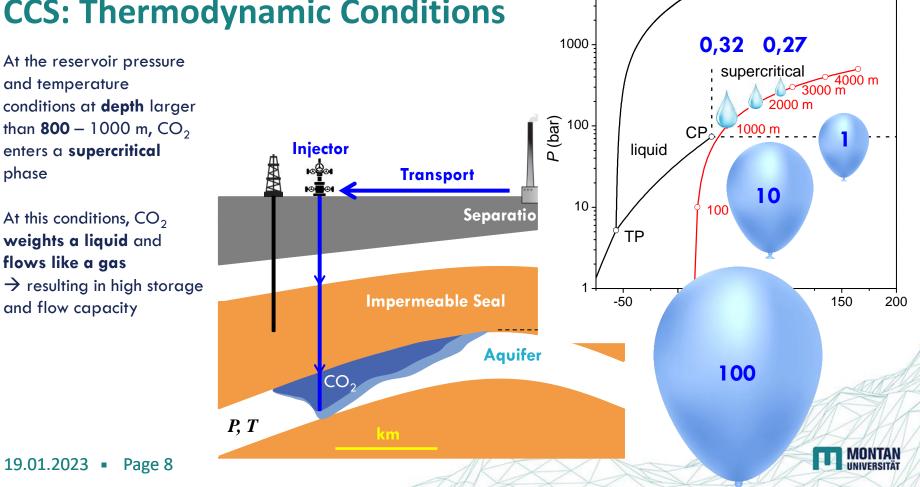
Carbon Capture and Storage


Technology chain

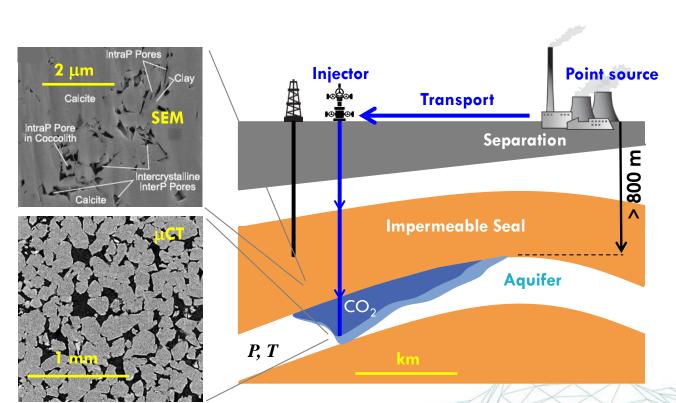
19.01.2023

- 1. Separation form large scale CO_2 emitters (point sources >0.1 Mt CO_2/a)
- 2. Transport to a proper geological site

Page 7


3. Injection into suitable underground reservoirs

Requirements for being a suitable geological storage: impermeable **seal** that cannot be penetrated by CO₂ Structural **trap** – under which CO₂ can accumulate A porous **reservoir** providing the storage space



CCS: Thermodynamic Conditions

phase

flows like a gas

CCS: Seal and Reservoir Rock

dpe perroleum engineering

 CO_2 is buoyant in reservoirs, therefore an impermeable seal is required Seal rocks are, e.g., shales forming a capillary barrier for CO_2 migration \rightarrow this refers to **seal capacity**


Next to the right thermodynamic conditions (fluid properties), a proper reservoir rock reservoir required

- High porosity referring to storage capacity
- High permeability referring to flow capacity

BECCS

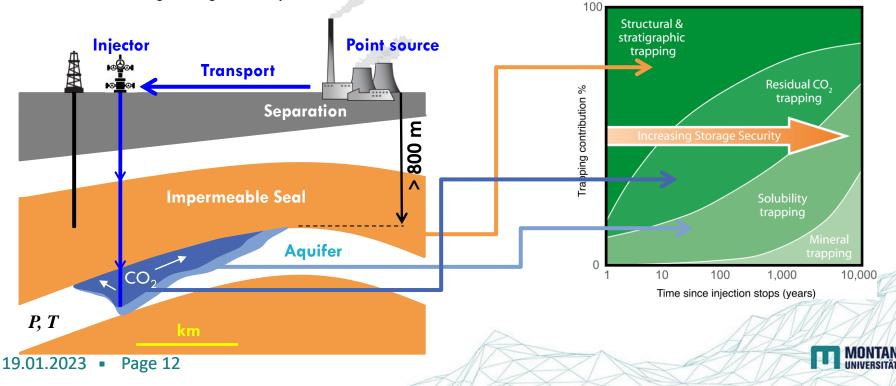
Combining CCS with bio energy and central combustion, e.g., in a powerplant, results in a direct path from the atmosphere to the geological carbon cycle \rightarrow a negative CO₂ footprint can be achieved.

PETROLEUM

CO₂ from the

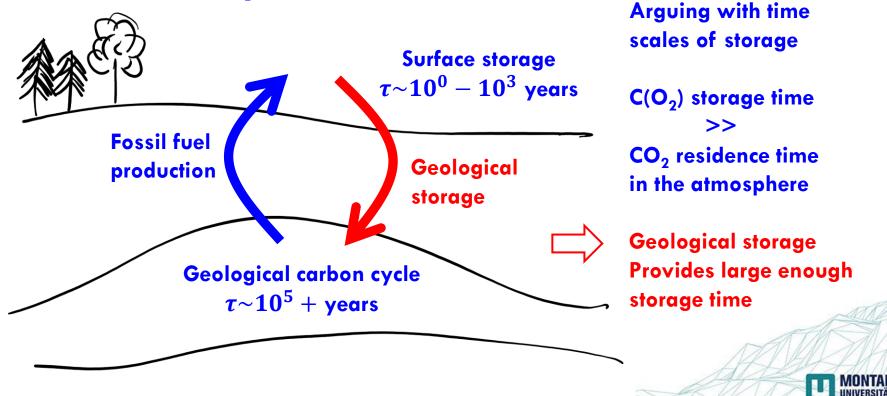
atmosphere

Aspects of Storage Safety



Trapping Mechanisms

Trapping (demobilizing) of CO_2 by barriers, capillary and gravitational forces and ultimately by forming carbonate minerals \rightarrow increasing storage security



Depends on injection design/strategy

Carbon Cycle – a (too) Simple Picture

 $\tau_{CO_2,atm.} \sim 10^2$

Is Save Storage Possible?

- Containment: sort-term requirement (time scale of operation): Seal Integrity, Integrity of the wells, both mechanical and chemical
- Trapping mechanisms: long term requirements

"Short-term" experience (time scale of operations)

- \succ CO₂ EOR (since the early 1970s)
- Natural gas storage (common practice)
- \succ CO₂ storage (since the 1990s)

Also nature does it – natural analogues

- Natural HC sources
- \blacktriangleright Natural CO₂ storage \rightarrow extensively studied

dpe petroleum engineering

Geological CO₂ storage is
Well understood
Mature → High "technology readiness levels"
Worldwide in operation
▶ Requires extensive side

specific evaluations

Ongoing and Planned Projects

Summary (IEA) Mature technology High TRLs

19.01.2023

Page 15

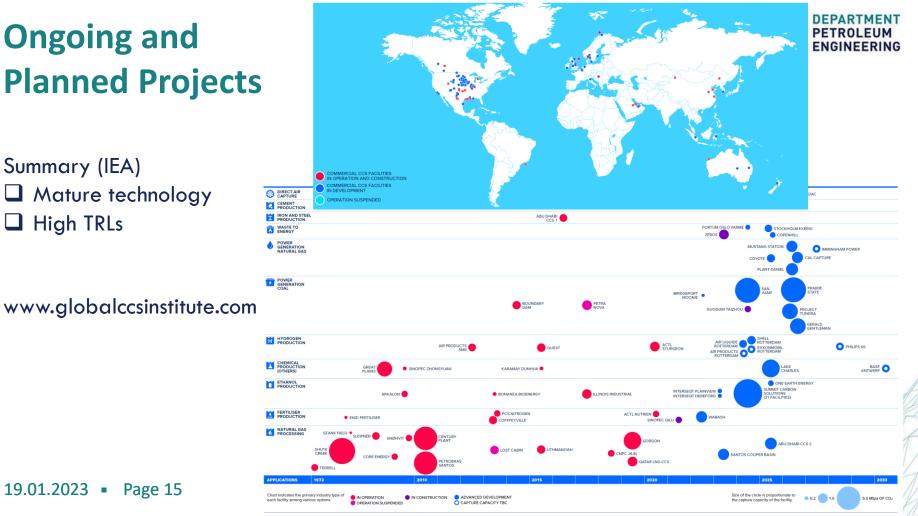
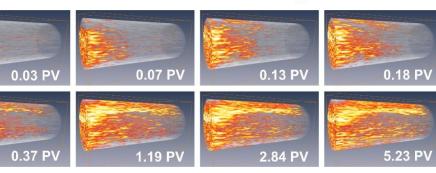


FIGURE 9 CCS PROJECTS BY SECTOR AND SCALE (BY CO2 CAPTURE CAPACITY) OVER TIME

Research Activities

CO₂ Migration and Trapping Models


simulations

R&D funding for CCS

limited in Austria

CO₂ injector

 $Kk_{r,i}(S_w)(\nabla p_i - \rho_i \vec{g})$

Fluid displacement and reactive transport models from experimental and numerical research

H. Ott, S. Berg et al. , *IJGGC* (2013, 2015) Kata Kurgyis, MSc Thesis, Leoben 2015 **19.01.2023** • Page 17

The Situation in Austria

Not permitted by law

 \rightarrow lack of research funds/lack of knowledge/experience building

Reevaluation of the legal situation in 2023

Suitable geological deposits

Depleted oil and gas fields

- Cons: alternative commercial usage models, well bore materials maybe not CO₂ compatible

Deep saline aquifers

- Pros: probably higher total storage capacity
- Cons: require larger field development times

19.01.2023 • Page 18

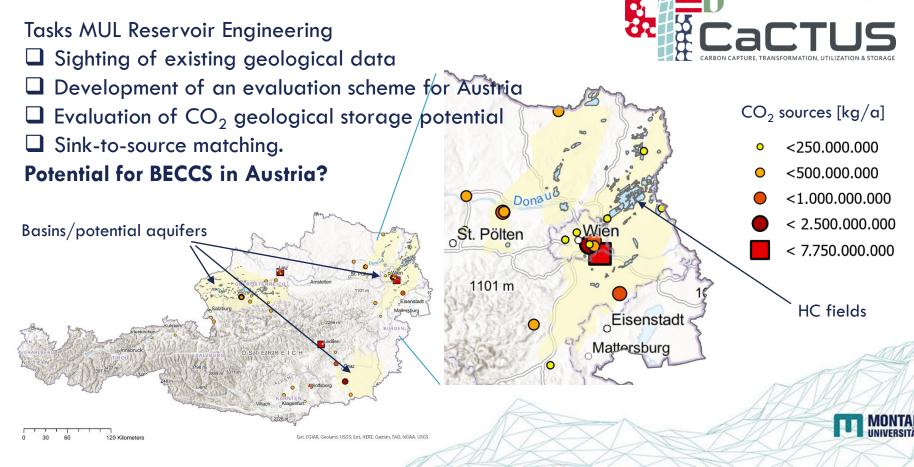
-Evaluation of the CCUS potential in Austria:

CaCTUS

Project goals

- Identification/quantification of the technical potential of CCU/CCS according to the Austrian "Nationaler Energie- und Klimaplan"
- Identification of source-specific climate effects and sink-related net mitigation Potentials
- □ Techno-economic evaluation of CCU/CCS and their contribution to climate neutrality
- Evaluation of barriers and the regulatory situation that prevent early implementation
- Recommendations for supporting climatefriendly CCUS activities in Austria.

Strong interdisciplinary consortium:



CO₂ Sources and Sinks in Austria

powered b

Questions?

holger.ott@unileoben.ac.at

www.dpe.ac.at

Authors: Holger Ott, Jakob Kulich